Model-independent test of the truncated crater function theory of surface morphology evolution during ion bombardment

نویسندگان

  • Joy C. Perkinson
  • Eitan Anzenberg
  • Michael J. Aziz
  • Karl F. Ludwig
چکیده

A broad class of “local response” theories seeks to predict morphology evolution during energetic particle irradiation in terms of average surface height response to individual impacts—an approach that has been generalized by the crater function formalism of Norris et al. [J. Phys.: Condens. Matter 21, 224017 (2009); Nat. Commun. 2, 276 (2011)]. Keeping only the terms in the crater function formalism associated with the response of a flat surface has facilitated the use of molecular dynamics simulations of individual ion impacts to predict the stability or instability of a flat surface to ion bombardment. Here we report a sensitive experimental test of this truncated crater function theory that is independent of any a priori knowledge of the crater function itself. Existing measurements for 1 keV Ar+/Si and Kr+/Ge are inconsistent with the predictions of truncated crater function theory, for any conceivable crater function, at high bombardment angles. The failure of the theory suggests that the prediction of surface evolution from simulations of single-ion impacts will be more challenging than had been assumed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in te...

متن کامل

Nanoscale surface pattern formation kinetics on germanium irradiated by Kr+ ions

Nanoscale surface topography evolution on Ge surfaces irradiated by 1 keV Kr+ ions is examined in both directions perpendicular and parallel to the projection of the ion beam on the surface. Grazing incidence small angle x-ray scattering is used to measure in situ the evolution of surface morphology via the linear dispersion relation. A transition from smoothing (stability) to pattern-forming i...

متن کامل

Molecular depth profiling by wedged crater beveling.

Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40-keV C(60)(+) cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography, and erosion rate can be obtained as a function of crate...

متن کامل

Effect of surface morphology on the sputtering yields. I. Ion sputtering from self-affine surfaces

As extensive experimental studies have shown, under certain conditions, ion bombardment of solid targets induces a random (self-affine) morphology on the ion-eroded surfaces. The rough morphology development is known to cause substantial variations in the sputtering yields. In this article, we present a theoretical model describing the sputter yields from random, self-affine surfaces subject to...

متن کامل

Estimation of the Stress Intensity Factors for Surface Cracks in Spherical Electrode Particles Subject to Phase Separation

Experiments have frequently shown that phase separation in lithium-ion battery electrodes could lead to the formation of mechanical defects, hence causing capacity fading. The purpose of the present work has been to examine stress intensity factors for pre-existing surface cracks in spherical electrode particles during electrochemical deintercalation cycling using both analytical and numerical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014